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ABSTRACT

A mixed formulation is chosen to overcome defici-
encies of the standard displacement-based shell model.
Element development is traced from the incremental varia-
tional principle on through to the final set of equilibrium
equations. Particular attention is paid to developing
specific guidelines for selecting the optimal set of strain
paraméters. ‘Included 1is a discussion of constraint index
concepts and their predictive capability relat;a to locking.
Performance characteristics of the elements are assessed in
a wide variety of linear and nonlihear plate/shell .problems.

Despite 1limiting the study to geometric nonlinear
analysis, a substantial amount of additional insight.
concerning the fihite element modelling of thin plate/shell
structures is provided. For example, in nonlinear analysis,
given the same mesh and load step size, mixed elements
converge in fewer iterations than equivalent displacement-
based models. It is also demonstrated that,.in mixed formu-
lations, lower order elements are preferred. Additionally,
meshes used to obtain accurate linear solutions do not
necessarily converge to the correct nonlinear solution.

Finally, a new form of locking was identified associated

with employing elements designed for biaxial bending in

uniaxial bending applications.
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CHAPTER 1
INTRODUCTION

1.1 Statement of Problem

A shell may be defined as being a curved structure
in three-dimensional space having small thickness relative
to its other two dimensions. Further classification as
"thick" or "thin" is determined by the ratio of the shell's
smallest radius of curvature to its thickness. Typical
examples encountered in practice might include: (i) civil
engineering arch and dome structures, (ii) aeronautics, with
its aircraft and space structures, and (iii) sheet metal
forming operations common to many engineering disciplines.

It 1is the accurate representation of these thin
shell structures using the finite element method that has
long been a concern of researchers. Understandably, in
light of the vast number of real-world  structures
classifiable as shell-like, the development of such an
element has received considerable attention.

These shell element formﬁlations may be identified
as falling into one of three distinct categories: (1) flat
element assemblages, (2) intrinsic curved elements derivable
from some specific shell theory, and (3) degenerated models

(and their predecessors, the 3D solids). Each of these



approaches has certain advantages and limitations. The
degenerated element has, however, gained the widest
acceptance due largely to its generality which, among other
things, enables it to be more easily extended for nonlinear
analysis.

Despite its appeal, the degenerated element, in its

most fundamental form, is far from trouble-free [32,48]. 1In.

particular, it has been observed to be: (i) susceptible to
locking (both membrane and shear), (ii) sensitive to
disﬁortion, and (iii) iacking insofar éé'stress calculations
Ware coﬁééfned. 7 -

In response to these shortcomings, numerous remedies
have been proposed. Some of the more notable ones include
reduced/selective integration (27,30,31,33,37,40,44,46,47,
48,56,62,66,72], heterosis models ([32,34], stabilization
techniques [10,11}13,39j, discrete Kirchhoff elements [5,
'8,9,22,23,36], and assumed strain methods [6,7,24,29,35,41,
49,55,65].

There is, however, still no general consensus in

hfavcéi of a 7p$r£iéularr approach due to its inhevent
limitations. For inétahce, reduced/selective integration
elements may, under certain 1loading and/or boundary
conditions, trigger Zero-energy deformation modes.
Stabilization techniques involve certain parameters which
still 1lack appropriate physical interpretations, while

discrete Kirchhoff elements are applicable only in thin
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plate/shell analysis. Finally, the assumed strain approach,
while very successful in the treatment of transverse shear
for straight-sided elements, does not appear to be readily
extendable for the approximation of membrane strains in
higher-order curved elements.

Departihg from standard displacement-based
formulations and their derivatives, various multifield
element models, e.g. hybrid and mixed methods, have also

been introduced [16,19,26,38,44,46,47,50,52,53,57-61,63,64,

67]. Comparatively, these models are much more sound
theoretically. All energy contributions are included, as
exact integration is used throughout. Additionally, this

"gimmick-free" attribute of the multifield models enables
them to be more easily extended for nonlinear analysis.
Factors such as .computational cost and need of specific
guidelines for choosing appropriate strain (or stress)
polynomials 'have contributed to their general lack of

acceptance in the finite element community.

1.2 Intent of Present Work

The primary objective of this research is to extend
the analysis capabilities of the 5 and 9-node linear mixed
elements developed previously [19,61] to include geometric
nonlinearities (large translations and rotations with small
strains). Much of the theory described herein does in fact
derive from these earlier formulations, e.g. the use of a

modified Hellinger-Reissner principle, imposition of the



Mindlin/Reissner assumption, strain pclynomial selection
guidelines with accompanying constraint index arguments and
finally, relaxation of the pointwise equilibrium
requirement. The present development, of course, now takes
into account nonlinear effects in the strain-displacement
relations. Additionally, Dbecause of the iterative
incremental step-by-étep solution method employed, out-of-
balance load considerations require that right-hand-side
load terms also be included. 7

Having established thé néed for continued research
into the thin shell finite element analysis area (Section
1.1), a discussion of the various methods presently
available to improve performance of the standard element is
taken up in Chapter 2. Assessing the strengths/weaknesses
of 'each with regard to suitability for extension to
nonlinear analysis, a degenerated mixed shell element is
chosen.

A descriptiop of the element is given in Chapter 3.
Much of the discussion mirrors that given in [19] and [61]
related to development of the base linear element.

' 'In an incremental fashion, Chapter 4 traces element
development from the modified Hellinger-Reissner variational
principle on through to the final set of equilibrium
equations. Included are discussions addressing such items
as: (i) comparison of stress and strain formulations, (ii)

why an updated, rather than total Lagrangian approach is

P 1 | e
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preferred, (iii) energy-conjugate stress and strain
measures, and (iv) why the "strain history" is needed in a
mixed formulation even for a geometric nonlinear (elastic
material) analysis.

Chapter 5 provides guidelines for selecting the
appropriate strain polynomial. Again, much of the
discuésion here may also be found in earlier papers [19,61].

Implementation of the element into an existing
finite element code is discussed in Chapter 6. This is
included primarily to facilitate similar future developments
involving new beam, plate or shell elements. It should also
prove to be beneficial if the analysis capabilities of the-
existing element are extended at some later date.

Numerical studies designed to assess the behavioral
characteristics of the element in a wide variety of 1linear
and nonlinear plate/shell applications are presented in
Chapter 7. Results are compared to those reported by other
investigators using various plate/shell models as well as
"exact”" solutions, when available.

Chapter 8 begins with a brief summary of the
research effort. Significant findings are also teported,

along with suggestions for future research directions.



CHAPTER 2
REVIEW OF PREVIOUS WORK

As described in the previous chapter, there exist
three  distinct categories into which shell element
formulations may fall. The degenerated element approach [1]
does, however, ?rovide a2 number of advantages and thus, is
~ generally regarded as be%ng the most age{ective. '

By applying appropriate constraints on the
displacements (u,v,w) in conjunction with an interpolation
‘scheme involvihg midsurface rotations as well as
‘Erenslations, a mlddle -surface element may be formulated,
free of many of the shortcomlngs of prev1ous theorles For
instance, as a result of interpolating rotatlons separately
from translations, only Co-contlnulty is requlred of the
kinematie Vvariables, making the lower order elements once
againr*egfrective. This approach is also appealing in that
no consideration is given to any specific shell theory. The
element thus may be used to ehaiyze a wide variety of shell-
type structures. Because transverse shearing deformations
are included, the approach is equally valid for the analysis

of thick shells. Finally, because of the ease in which the

shell geometry and compatibility conditions may be
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satisfied, extension to include the analysis of nonlinear
shell problems should be straightforward.

Regardless of the approach, an efficient and
reliable element for plate/shellﬂanalysis should satisfy
certain criteria. In addition to convergence and invariant

requirements [4,21,25,73], the element should be:

(i) Relatively simple in its formulation
and application
(ii) Computationally efficient
(iii) Free of any zero-energy deformation
modes
(iv) Free of shear/membrane locking
(v) Relatively insensitive to geometric
distortions
(vi) Accurate insofar as stress predic-
tions are concerned
(vii) Easily extendable for various types

of nonlinear analysis

In general, it is rather difficult to achieve all of
the characteristics listed above. The URI element, for
exampie, is certainly simple and efficient, but may
encounter difficulties under certain loading/boundary
conditions, or if appreciably distorted. Mixed methods, on

the other hand, can generally satisfy items (iii) = (vii)



but, rglative' to the URI element, require more effoft
computationally and are not as easily formulated.

With this general background in mind, some of the
more successful degenerated plate/shell elements are
reviewed. Discussion will focus on how effectively each of
the formulations meet the above criteria, with particular

attention given to item (vii).

2.1 Displacement-based Formulations
Assumed displacement models, obtained by invoking
the stationarity of the total potential energy, represent

, o
the most frequently employed apprcach to formulating C

plate/shell elements. Despite their widespread use, these
elements are, in certain applications, still quite
inadequate. As a result, numerous alternative formulations
have been intrcducea. In the following, some of the more

popular methods for improving behavior of the standard

element are described.

2.1.1 Reducéd/Selective Inteéféfiéﬁ”Tééhniques

In terms of element modification, adoption of a
uniform reduced integration scheme represents the most
direct of all possible approaches. However, while the URI
element may prove to be beneficial for its softening
effects, under certain loading and/or boundary conditions,
zero—-energy deformation modes may develop. In this setting,

the analysis becomes numerically unstable. Even more
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dangerous is the formation of a near-mechanism. Here, the
analysis remains stable, but yields a solution grossly 1in
error.

Pugh et al [56] provides insight as to why these
mechanisms form. A singularity parameter is defined by
comparing the total number of available degrees of freedom
to the total number of independent strain component
equations. Inexact integration necessarily reduces the
number of independent relations, thereby increasing the
likelihood that a singularity may develop.

Of the five plate models investigated (4, 8, 9, 12 &
16-node), only the higher-order cubic element was free of
locking when integrated exactly. None were mechanism-free
when a uniform reduced integration rule was employed. Bathe
and Bolourchi [3] in fact recommend the use of exactly
integrated higher-order elements to combat lockiné since,
in a generalllarge displacement shell analysis, the effects

of reduced integration have not as yet been accurately

assessed. Their computational cost may, however, be
excessive. '

In the context of plate analysis, by
underintegrating shear energy contributions only, the

selective reduced integration elements are less susceptible
to problems of rank deficiency. Applied to thin plates, the
tendency to lock is also avoided. When extended to shells,

however, the SRI element (shear only) was found to be of



little help [72]. Here, membrane contributions are of
primary concern and they too must be evaluated with an
integration scheme of reduced order. Though an improvement
over the URI element, the number of Zero-energy modes
present in the SRI element (shear and membrane) may still be

at an unacceptable level (see discussion to follow).

2.1.2 Heterosis Models

Focusing their attentions on the 9-node Lagrange
plate element of [56], Hughes and his co-workers [31,32,34]
proposed several schemes to improve its behavior. As had
been prev1ously reported by Pugh thlS partlcular element
locks when 1ntegrated exactly and 1ntroduces four zero—

energy modes at element level lf unlform reduced 1ntegratlon

is used

Initiaily, a selectlve reduced 1ntegrat10n scheme

was adopted [31]. The resultlng element was lock free and
rnow contalned only one zero- energy mode. Desplte arguments
that the remaining mode could usually be suppressed
globally, it did still pose a potential danger, particularly
when removed from the more easily understood domain of
linear elastic isotropic apalysis with unchanging boundary
conditions. The heterosis element concept [32] eliminates
this remaining mode by using only 8-node serendipity shape
functions to describe transverse displacements, while

retaining rotation effects at the interior node. This is

10
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accomplished without greatly affecting the element's
convergence characteristics (constraint index drops from 4
to 3).

The above was 1later extended for the general
nonlinear case [34]. Throughout, "exact" integration was
used for membrane contributions and satisfactory results
were still obtained. This occurs only because: each of the
test problems considered were of the shallow sheil variety
where little, if any, significant membrane effects are felt.
For deep shell analysis, it is necessary to underintegrate
membrane terms as well, which then introduces three
additional mechanisms [48].

Perhaps the most compelling feature of [34] was the
introduction of a lamina system for defining the
constitutive and . strain-displacement relations. Since
bending and membrane enerdies are coupled in a curved shell
analysis, separation of their individual contributions had,
in the past, posed a major problem. With this element-level
reference frame, it 1is now possible to evaluate shear,
bending and membrane energy contributions individually in a
general nonlinear curved shell analysis, thus making the SRI
elements much more attractive. It should be kept in mind,
however, that even with this type of scheme (reduced
integration on both shear and membrane), the 9-node Lagrange
shell now contains not one (as with the plate element), but

four kinematic modes at element 1level. Imposing the

11



heterosis model assumptions on transverse displacements only

reduces the number of modes to three.

2.1.3 Stabilization Techniques

Potential rank deficiency problems in the URI
element provide the motivation for stabilization techniques.
The stabilizing parameters function to mitigate rank
deficiency, while still retaining the beneficial softening
effects of reduced integration. Being orthogonal to the
rigid body and deformation médes, they are also observed to
have no adverse effect on convergence. Early work ' [10]
required the use of a free parameter to regulate the degree
of stabilization. More recent efforts [39] identify these
parameters as béing related to generalized stresses/strains.
To date, ﬁhe nonliqear applications (geometric only) have
mnéﬁr beeﬁréévere. 'Extensién iﬁfc othér mofe compléx areaé,
with appropriate phyéiéal interpretatibn for the stabilizing

parameters, is not clear.

2.1.4 Discrete Rirchhoff Elements

Misrepresentation of shear strain energy in the thin
plate problem provides the motivation for Discrete Kirchhoff
Element formulations. -~ Here, 1locking is avoided by simply
neglecting energy associated with transverse shear. This,
of course, limits their use to thin plate/shell applications
only, where shear strain energy 1is indeed negligible.

Crisfield [22] later developed a set of constraint relations

12
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associated with the neglecting of transverse shear strain
energy. Again, extension for general nonlinear applications

is not readily apparent.

2.1.5 Assumed Strain Formulations

Assumed strain formulations were introduced in
response to the standard displacement-based element's
“inability to accurately represent certain strain energy
contributions. "The QUAD4 element [40]) employs exact
integration for bending response, but requires an assumed
strain approach in conjunction with an SRI scheme for
transverse and membrane shear, A free parameter related to
the element's aspect ratio, and definition of a '"residual
bending flexibility" parameter are also required.

The assumed strain elements, while very successful
in the treatment of transverse shear for straight-sided
elements, experience difficulties when approximating
membrane strains in higher-order curved elements. Some of
the more recent formulations [7,55,65] have had success in

simpler nonlinear applications.

2.1.6 Other Displacement-based Procedures

Of course, there have been many other approaches
adopted 1in an attempt to improve upon those areas in which
the standard displacement-based element has been observed to
be deficient. The preceding sub-sections concentrated on

only some of the more popular methods. Other procedures of

13



note include anisoparametric interpolation [68,69], physical
lumping processes [2], mode decomposition [12,14],
incompatible elements [71] and free-form finite element

formulations [15].

2.2 Multifield Methods

As an alternative to the displacement  method,

various multifield approximations, e.g. hybrid, mixed and

quasi-conforming models ([67,70] may also be wused for

development of effective plate/shell elements. In the

hybrid and mixed methéds, for example, one has the freedom

to approximate more than one field, e.g. displacements and
stress (or strain), within an element. These methods appear
to have greater potential, pafticularly for use in
constrained media problems.

Appiications of the hybrid and mixed methods to
plate and shell analysis have had only limited success, for
several reasons. First, relativeiy few studies have been
undertaken, compared to the displacement-based models.
Secondly, many of these previous investigations have failed
to obtain reliable lower-order elements, Attentions were
thus turned to the higher-order elements, for which the
hybrid and mixed methods become less attractive.
Additionally, in many of these earlier developments,
pointwise equilibrium conditions were often imposed in
selecting the assumed strain parameters [16,52-54,63,64].

This requirement places a severe limitation on the method's

14
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usefulness, particularly in nonlinear applications.
Finally, these methods suffer from a 1lack of specific
guidelines for choosing appropriate stress (or strain)
parameters. In fact, many previous studies were conducted
on the basis of a trial-and-error procedure, in which
numerical tests were performed to determine the "best"

choice.

2.3 Element Selection/Justification

Having assessed the strengths/weaknesses of the
various approaches available, a degenerated mixed shell
element 1is chosen for the present research. The primary
objective will be to extend the analysis capabilities of the
5 and 9-node linear elements developed previously [19,61] to
include geometric nonlinearities.

As pointed— out by Gallagher [25], the notion of
reduced integration is not fully justifiable on theoretical
grounds. The same might also be said of many of the other
schemes cited in Section 2.1. The mixed element, on the
other hand, 1is of sound theoretical basis. All energy
contributions are included, since exact integration is used-
throughout. Additionally, this "gimmick-free" attribute
enables mixed elements to be more easily extended for
various nonlinear applications.

Even at the linear level, there are indications that
mixed element formulations will be more successful in

nonlinear analysis. Here, the mixed models, when compared

15



to the equivalent displacement-based element, were observed
to be much less sensitive to distortion and substantially
more accurate in evaluating stress [19,26,59-61]. This
takes on added significanée in nonlinear analysis, where :
(i) even initially undistorted elements become distorted in
highly geometric nonlinear settings, and (ii) the iterative
solution process involves calculation of an out-of-balance
load term, which 1s directly related to the element's
current stress state. By being less sensitive to distortion
‘and more éccufété;'iﬁsofar as stress calculations are
éégcerned, it féiiaws that the mixed elément, when compafed

to its equivalent displacement-based model, may converge in

fewer iterations over the same size load step. Thus, the
‘mixed element, despite requiring more effort to form the

element stiffness matrix, quite possibly may be able to

‘recover a Wlaféé po:tidgwéﬁifhfs éipenserin a full-blown,

nonlinear finite element ahaiysis.

Finally, mixed element formulations are attractive
due to their flexibility with regard to choosing the assumed
strain polynomial. The "standard" elements have no such
freedom, and are therefore more prone to locking. This is

discussed more thoroughly in Section 5.2.

16
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CHAPTER 3
ELEMENT DESCRIPTION

Set forth in this chapter 1is the methodology
necessary to effectively track a typical shell element's
location and subsequent deformation during an iterative
step-by-step solution process. Inasmuch as the analysis is
essentially a generalization of the linear case’ (19,61],
information provided in these earlier works (also see [34])

is again made use of here.

3.1 Coordinate Reference Frames

To adequately describe position and motion of the
shell, three sepérate Cartesién coordinate systems are
required,  These reference frames are illusfrated in Figure

1 for the degenerated 9-node Lagrange shell element.

3.1.1 Global System
Typical of most formulations is a global system,

defined 1in Figure 1 by the orthonormal base vectors e , e
1 T2
and e . It functions to determine both the element geometry
"3
and its nodal translational degrees-of-freedom.

17



A Degenerated 9-Node Lagrange Shell Element
Figure 1
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3.1.2 Fiber System
At each node, a unique local Cartesian reference

frame 1is constructed. This fiber system, designated as

£(k) «

e , is used to define the nodal rotational degrees-of-
i

freedom. To insure uniqueness at noncoplanar element

intersections, the thickness direction must be defined (as
user input) by specifying coordinates of the shell's top and
bottom surfaces. At node "k" then,
f(k) + - + -
e =(x -x )/ |l x -x [ (1)
3 k k k k
where x = (X,Y,Z) are the global Cartesian coordinates, and
“k 7
|| « || the Euclidean norm of a vector. If coplanar, only
middle surface geometry 1is required, with the fiber
thickness direction specified as
£ (k) .
e =(x x x )/ |lx x x || - (2)
3 k,r k,s kK, r K,s
where the comma denotes partial differentiation with respect
to the indicated coordinate directions.
Regardless of the method chosen, once the fiber

thickness is defined, specification of the two remaining

fiber directions proceeds according to

£ (k) " f(k)
e = e X e
1 "2 "3
(3)
£ (k) £ (k) £ (k)
e = e X e
"2 "3 1
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If the globai Y-axis should happen to coincide with the

£ (k) £ (k)
fiber direction, e and e are defined instead as
1 T2
f (k) £ (k)
e = e X e
"2 "3 1
(4)
£ (k) £ (k) £ (k)
e = e X e
"1 T2 °3

As the incremental analysis proceeds, this system'

rotates rigidly along with the nodal fiber. Fiber direction
components are continually updated using a forward Euler
method with a sufficiently large enough number of
integration intervals (code default is 20), i.e. :
t+At £(k) t £(k) . S t £(k) (k) t f(k)

e

e = - e de + e de (5)
"3 °3 "2 1 "1 2

where the left superscript is the time "variable" used to
reference  the current load step configuration. If
iterations areigequired within the load‘step, "t" and "t+AL"
could then, of coﬁrse, be replaced by iterationrcounters win

and "i+1", with the equation being equally valid.

3.1.3 Lamina System

At each (r,s,0) integration point, a local Cartesian
reference frame 1is defined such that two of its axes are
tangent to the lamina (or middle) surface. This systenmn,
specified by three orthonormal base vectors gl, gl and gl,
is constructed such that the in-plane laminae 1and2 naturgl

coordinates share the same angular bisector (se2 Fig. 2)
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Lamina Coordinate System Construction (Plan View)
Figure 2
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e =x,r/ | X, r | |

r
e =X,/ Il X,s |
S
1
e = (e x e)/|]le x e]|l
"3 r °s r °s
e =(e +e)/||le +ell " (6)
a r "S r s
1 1
e = (e xe)/|]le xel]l
b °3 "a a
1l
e =(e -e)/||le -el]l
7 1 a b "a b
.- 1 o
e = (e +e) /|l e +e |
T2 “a b Ta b

Defining the lamina coordinates in this fashion is necessary

in order to insure invariance of the stiffness matrix for

) , o 1
nonrectangular elements. For the undistorted element, e
1 "1
and e degenerate to e and e , respectively.
"2 r °s '

-

3.1.4 Additional observatiors o

As demonstrated for the 5-node element in Figure 3,
gl and gf, in general, do not coincide. In the first case,
ngnunifoim element thickness causes gl to deviate from the
fiber direction. Figure 3(b) illugtrates complications

introduced when modelling shell-to-shell junctions. As a
final example, the straight-sided quadrilateral simply
cannot accurately define a curved geometry, which once again
leads to a misalignment between g; and gf. This, 1in fact,

3 3
provides insight as to the proper procedure for generating
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Misalignment of e% and the Fiber Direction

Figure 3
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unique fiber reference frames. In general, equation (2) may
be used for the 5-node element only if the initial geometry
is flat. Similarly, for the 9-node element, if the
structure may be defined geometrically by at most a second-
order curve, (2) will generate identical fiber thicknesses
for all elements sharing ébmmoh nodes. Equation (1) would
be applicable for more complex geometries. Of course, (1)
should be used regardless, if either of the situations
depicted in Fig. 3(a) or 3(b) exists.

Since the integration point-based ‘lamina system
rotates rigidly as the element‘deforms, it is also the most
convenient for: (i) introducing the plane stfess assumption,
(ii) defining the constitutive relations, and  (iii)
interpolation of the assumed strain field. 1In this context,
the strain-displacement operators, written in terms of
global translational degrees-of-freedon, will naturally
require a transformation if they too are to be represented
in the lamina reference frame. This is accomplished by
defining an orthogonal matrix T at each (r,s,0) integration
point, i.e.

l
x =Tx (7)

where T consists of direction cosines relating global
and lamina coordinates. The transformation matrix defined
above may then be used to obtain strain components with

respect to the current lamina reference frame.
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3.2 Geometric Description

The elements considered in this work are the
nonlinear counterparts of [19] and [61], i.e. the 5-node
quadrilateral and 9-node curved shell elements, which for
later discussion are designated here as SHELM5 and SHELM9,
respectively. As Dbefore, these elements are basically
degenerated shells except that both displacement and strain
fields are independently assumed. Even though top and
bottom surfaces may have been used in specifying the fiber
direction, 1in all other respects the elements are still
considered middle surface models.

Consistent with the isoparametric  formulation,
position of a generic point in the element is defined 1in

terms of natural cocordinates as

, n n ,
-t £(k)
x(r,s,t) = E{:N X + - j{:h.N e (8)
) X'k 2 k k73
k=1 k=1
where, n = number of nodes used to describe element geometry
x = position vector of nodal point "k" on the refer-
"k : ,

ence surface

h = shell thickness in fiber direction at node "k"
"k

and N are the two-dimensional shape functions associated
k

with node "k". The usual interpolations [4,21,73] still

apply for SHEIM9, with those of [61] again used here for the

5-node quadrilateral
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2 2
(L -r) *(1-358)

, 1 , 1 (9)
N (r,s) =-(1+rr) * (1L +85s) --N (r,s)
k 4 k k " 4 5

N (r,s)
5

In keeping with the linear element formulation, for
SHEIM5, only coordinates of the corner nodes (n=4) are used

to define geometry in the initial configuration. However,

as the solution proceeds, all five nodes are wutilized in-

defining both x and u.

Also of note 1is that equations (1)-(4) and (8)
together upiquely map a biunit cube into the physical shell
"domain. Thus) for a fixea'ﬁair of (r,s) vaIUES, the line
obtained from (8) corresponds to é'fiéer[ A lamina surface

results if "t" is held constant.:

3.3 Kinematic Descripticn

At each node, five degrees of freedom are defined;

three translations (u,v,w) along the global Cartesian axes

(k) (k) '
and two rotations 8 and © about mutually perpendicular
f(k) f(k) 1 2
axes e and e normal to the fiber thickness direction

1 2 e
(see Figure 1). Elements SHELMS5 and SHELM9 thus contain a

total of 25 and 45 degrees-of-freedom, respectively.

~ Motion 1is defined by adopting the usual kinematic
assumptions for degenerated element models: (i) Mindlin/
Reissner plate theéryr applies; thus enabling shear
deformation effects to be included in the analysis, (ii)
plane stress conditions prevail, so that no transverse

normal stress 1is developed, and (iii) incrementally,
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rotations are small (embedded in (5) also). With the above
assumptions, element matrices can be formulated directly
using standard isoparametric element procedures.

Considering (8) at times "O", "t"™ and "t+At",
expressions for total and incremental displacements for a

generic point in the element are given as

e

Tt £ t £(k) 0 £(k)
u =ZE: N u + - h N (e - e ) (10)
- k - 2 kk °3 3

po |
o

t t+At £(k) t £(k)
Au =§E: N Au + - h N ( e - e ) (11)
) 2

- k "k k k "3 °3
=1 k=1
where, u = translation of nodal point "k" referred to the
"k t 0
element midsurface ( x - Xx )
“k "k
Au = incremental translation of nodal point "k"
"k : t+At t
referred to the element midsurface ( X - X )
"k "k
with all other variables defined as before. . Substituting
the linearized approximation férl(S) into (11), incremental

displacements within an element may now be described in
terms of the nodal point incremental translations and
rotations

n ,
t £(k) (k) t £(k) (k)

n
t
Au=ZNAu +-ZhN(-e & + e e ) (12)
- k "k 2 k k "2 1 "1 2
=1 k=1
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The finite element solution will yield the nodal point
(k) (k)
variables Au , © and 8 , which are then substituted
- 2
back into (5) to accurately define the current updated fiber

system [4].
Utilizing (10) and (12), expressions for the global

strain-displacement relationships can be written as

g g
e =3u /3dx =B q (13)
s - = °NL ¢
, 9 g
AS - =3Au /3ax = ?L A\ (14)
g g e . .
where, e , pe = initial (time "t") and incremental global
strains ordered as
T
(e, e, e,y Y _ +Y_ )
X Y Z XY YZ XZ
g
B, B = linear and nonlinear global strain-
“L °NL i , -
i displacement operators (p. 377 of [4])
d, A9 = initial and incremental nodal displace-
ments ordered as '
(1) (1) (n) (n) T
[fu ,v ,w ,© 8 ; sss 4 ,V , W ,0O , 0 ]
1 1 1 1 2 n n n 1 2
T

[ ] = transpose of a row vector

The transformation defined in (7) may then be employed to
obtain strain components referred to lamina coordinates. As
described in Chapter 4, this is the preferred system in

which to define the requisite finite element equations.
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CHAPTER 4
FINITE ELEMENT FORMULATION

Finite element methods in structural and solid
mechanics are frequently formulated via a' variational
approach. This chapter traces the eleﬁent development from
an incremental modified Hellinger-Reissner principle on
through to the final set of finite element equilibrium
equations. The variational is termed "modified" because a
strain assumption is employed. Although'equivalent to the
stress formulation in linear analysis, a strain assumption
does offer distinct advantages for nonlinear applications.
For example, 1in the case of material nonlinearity, the
bending strains may still be assumed to vary linearly in the
shell thickness direction. This is certainly no longer true
for the corresponding stress components. Moreover, material
models residing in existing displacement-based finite
element programs can still be utilized for the mixed methods
without major coding modifications. -

With respect to the finite element approximation for
strain, decisions must be made regarding: (i) the reference
frame to which the strain components are to be defined, and
(ii) the coordinates in terms of which the polynomial basis

functions for these strains are written. Although any
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reference frame could be used (global, 1local, curvilinear),
lamina coordinates are preferred because they are the most
natural system in which to define the shell constitutive

relations together with the =zero normal shell stress

assumption. To achieve the necessary element invariant
property, strain polynomials interpolated in global
Cartesian coordinates must be complete. This requirement

would, however, negate one of the mixed model's most
attractive features; namely, the freedom to Jjudiciously
select shear strain parameters to alleviate locking.
Expressing in terms of natural coordinates instead, the
invariance requirement is easily satisfied. In the
derivations that follow then, a lamina system reference
frame with strain polynomials expressed in natural
(isoparametric) coordinates is implied.

Inciﬁded -in the formulétion are nonlinear effects
stemming from large displacements. In dealing with
geometric nonlinearities, a total (TL) or wupdated (UL)
Lagrangtan approach may be used to describe the state of
deformation. TL formulations refer all static and kinematic
variables to an initial configuration at time "0", while an
UL approach uses the previously calculated equilibrium
configuration at time "t" as its reference. Both
incorporate all Kkinematic nonlinear effects due to large
displacements, rotations and strains so that, in theory,

identical results should be obtained regardless of the
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method chosen. In the present context, use of a rotating
integration point-based lamina reference frame suggests an
UL formulation might be the more efficient approach.

Finally, the 1issue of strain history for geometric
nonlinear analysis must be addressed. In displacement-based
element formulations, the strain (and therefore stress) at a
point at any time "t" is obtained simply by differentiating
the total displacement. This is not the case in a mixed
formulation, however, where strains are interpolated
incrementally. To determine the total strain at any time
"t", it is therefore necessary to sum and store incremental
strains at the integration points throughout the entire
solution process. For material nonlinear analysis, of
course, even the standard element requires some type of
strain/stress history. This aspect of the formulation is
further discussed in Chapter 6. ‘
4.1 Incremental Modified Hellinger-Reissner Varlatlonal

Principle

Although the functional outlined below may be used
for 1large deflection, large strain analysis, the current
research is confined to small strain applications. Provided
an appropriate incremental strain energy potential can be
defined, material nonlinear effects may also be
incorporated.

With regard to the specific nature of the strain

tensor, an UL formulation requires use of Almansi (total at
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time "t") and updated Green (incremental) strains. The
energy-conjugate stresses are then the Cauchy and updated
2nd Piola-Kirchhoff stresses, respectively [70].

As with any incremental step-by-step solution, the
static and kinematic variables in some equilibrium
configuration at time "t" are assumed to be known, with the

objective being to determine their values in some unknown

equilibrium configuration at time "t + At". A modified

Hellinger-Reissner variational principle [51] provides the

starting point for the incremental analysis:
N , T T -
AWHR(A‘_J.AgB) = | LT1/2 88 Cas (e ¥ pe) C e

T - T
- ae C (e -e) - (F+ AF) Au] dv

T
'S (T + AT) au] ds
So—:', FE - [
T - - T
_J [AT (Au - Au +u - u) + T AL}] dS (15)
S - - - = -~ - -
u

where, u, Au = initial and incremental element displacement

Ae independently - assumed element incremental

updated Green strains (seereqtn. 24)

A

ae

element incremental updated Green strains
derived from displacements
e = element strains at time "t" from assumed

strains
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e = element Almansi strains at time "t" derived
from gisplacements
C = material stiffness matrix (g = Ce)
F, AF = initial and incremental element body forces
T, AT = initial and incremental element boundary
tractions
() = transpose of a column vector
() = prescribed quantity
V = element volume
S ,S = portions of element boundary surface area S
over which tractions and displacements are
prescribed, respectively

(SUS=S;S0NS =0)
g u g u

Invoking the stationarity conditions of (15) with

respect to variations in Au and Ae yields the corresponding

Euler equations. In indicial notation, they are expressed
as
e =¢e=1/2 (u + u - u u ) (16)
o7 i,] j, i k,i k,3J
Ae = Ae = 1/2 (Au + Au + AU AU ) (17)
' 5 T 1E S O S

(e, v S, )3+ [+ AS ) au, 1,3+ (F 4 AF )=0 (18)
ij ij kj k3j ik i i

along with the associated boundary conditions on S; and S .

u

Equations (16) and (17) are the strain-displacement compat-

ibility relationships, while (18) represents the nonlinear
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stress equilibrium condition. Here, the material stiffness
matrix linking stress to strain has been substituted. -
Lumping the body force and surface integral

equation (15) is simplified to the following form

T T
ATT _(au, pe) =‘g [-1/2 pe C pe + e C D (Au)
HR \' T L

T T -
+ e CD (AU) + pAe C D (Au)
- NL ° T LT

T T
-pe Ce+peC (D (u +D (u)]av
-7 - L - NL ~
_T
- Q Au (19)

where those Vstrains!derived from'aispigcementsr have been
further <classified according to 1linear and nonlinear
derivatfve operators

ES

e=D (u) +D (u) =
L~ NL ~

1/2 (u + u Yy - 1/2 u u (20)
i,3 i1 k,i k,J

Ae = D (Au) + D (pu) =
L NL

1/2 (Au + AU + 1/2 AU ' 21
/2 (A i3 A 3 i) /2 4 K i aAu (21)

? ’ 4 fj

i T
and the higher order term, Ae C D (Au), has been neglected.
R

It is worth noting again at this point, that (19) is
with respect to the lamina coordinate system at time "t" so

that each of the derivative operators, as well as the
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independently assumed incremental strains and constitutive
relations, are local in nature. Specifically, this implies
a transformation from global Cartesian reference frame for

(20) and (21), and a material stiffness matrix of the form:

1 v 0 o] 0
, A 1 0 0 0
2 <
C=E/(1-v ) = 0 0 (1-v)/2 O 0 (22)
0 0 0 k(1-v)/2 O
| o 0 0 0 k(1-v)/2
where, E = Young's modulus

Poisson's ratio

shear correction factor (assumed to be 5/6)

As discussed earlier, the independently assumed strains (see
egqtn. 24) are interpolated in the current lamina coordinates
and, as such, require no additional transformation.

Since displacement derivatives appear in the
variational, continuity requirements necessitate their being
at least Co-continuous. The strains, on the other hand,
require no differentiation and are therefore permitted to be
discontinuous across element interfaces. Consequently, the
strain parameters may be eliminated at element level,
leading to a stiffness matrix formulation similar to the
conventional displacement-based elements.

Finally, it 1is also of 1interest to note that

compatibility mismatch terms are included in the
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formulation. Solutions obtained using standard displacement
models automatically satisfy this relation since, by
definition, strains are computed as derivatives of
displacements. Mixed methods, however, interpolate strains
independently from displacements and may therefore violate
this most important requirement. To minimize drifting of
the solution, the mismatch terms must be retained.:
4.2 Finite Element Approximation and Element Stiffness
Matrix

In the finite element discretizaﬁion, Au.  is

interpolated in terms of nodal displacements, while pAe 1is

approximated by a set of generalized strain parameters

Au = N Aq (23)

Ae = AB (24)

g

‘Substitution of (23) and (24) into (19) leads to

T T T
ATT (A2.AB) = =1/2 AB H AR + Q A + 1/2 pg K A9
HR 1 NL ‘
T T T (25)
+ 0B G Ag + AR (2-W) - Q AT
T
where, H =X V[? C P] av (26)
T i
G=g (P CB] av (27)
- v T L
T -
K =S [B TB ] dv (28)
"NL / V °NL™ °NL
T
Q =S [B C e] dv (29)
"1 JV LT

36

High

BT TR

(A



T -
Z ==S [P C e] AV (30)
2 vt ot -
T
W=\ [PCe]av (31)
" vt o<t
Q = terms in Q of (19) ¢ (32)
B = linear strain-displacement operator
"L
referred to lamina coordinates
g
(B =TB) (33)
L ° "L
B = nonlinear strain-displacement operator
"NL
referred to lamina coordinates
g9
(B =TB ) (34)
“NL ~ "NL
[t I ]
1173 (symmetric)
- 100
T =|T I T I ; T =|o010 (35)
- 1273 2273 "3 0 01
T I T I T I
1373 2373 3373

Invoking the stationarity of (25) with respect to
strain yields AB in terms of AQ

-1
AR =H [GAg+ (Z2-W)] (36)

The incremental strain parameters are eliminated at element
level by substituting the above relation back into (25).

After some manipulation, the functional reduces to
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B T T -1 T T -1
ATTHR(A‘.I) = /2 M6 A9 + A3 G H(Z2-W)
T
+1/2 (Z-W) H (2-W) + AQ Q

T T
+1/2 Ad KA - A9 Q (37
NL

e I
Q)

fon

Stationarity of the functional, now with respect to

Ad leads to
Kag=Q-(Q+Q) (38)
1 2
T -1 = -
K=GH G+ K (39)
) -7 "NL '
T -1
Q=GH (Z-W) (40)
-2 - - --.

where K represents the element tangent stiffness matrix, and
Q@ an additional right-hand-side load vector Vcontribution
é%@earing as a result of inéluding compatibility mismatch
terms in the original variationalﬂ statement. Any
corrections for equilibrium mismatch are also intrinsically
included in the formulation as Q functions to balance
internai stresses with external %oadg, in the iterative
solution process.

Solving for AgQ in (38) leads to an approximation for
the nodal point displacements at time "t+at", i.e.

t+pt t
= g9+A49 (41)

By inserting AaAq back into (36), the corresponding

incremental strains can be obtained from (24)
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-1
pe =P AB=PH [CAg+ (2-W) (42)
Adding to those at time "t" yields an approximation to the
total strains at time "t+at". Stresses are then directly

obtained from (22) as

-1
G-ce-cyasmcy RH [GAT+ (W] (49)

However, because of the vérious assumptions and
linearizations involved, such a solution may be subject to
very significant errors. In practice therefore, it |is
usually necessary to iterate until a solution for aAgq is

obtained to "sufficient accuracy".

4.3 Recovering the Linear Element

The corresponding 1linear element may be recovered
from (15) simply by assuming that all terms associated with
initial effects vanish. For clarity, the "A 's" are dropped

so that the functional for the linear element becomes

T T ° T
Il (u,e) ==S [-1/2 e Ce + e Ce - F u] av
HR = ~ \'4 =TT -0 T
' _T T _
-S [T u] ds - [T (u - u)] ds (15%*)
Sv' - Sy~ -

The above is further simplified, by again lumping the body
force and surface integral contributions into a single
externally applied load term

T T T
1T (u,e):=S (-l/2 eCe+eCD (u)]dav - Qu (19%)
HR ° ~ v - - T L - -
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In the finite element discretization, u is
interpolated in terms of nodal displacements, while e |is

approximated by a set of strain parameters

u=

-

q (23%)

e = (24%)

[y}
(e

Substitution of (23%) and (24*) into (19*) leads to

T T T
T (28 =-1/2888 + 869 - Qg (25%)

where H, G and Q have been defined previously in (26), (27)

and (32). As before, the stationarity of (25%) yields B as

a function of g

-1
P=1cgq (36%)
The strain parameters are eliminated at element
level by;sﬁBSEiquiﬁgré back into (25%).  Variation of the

resulting functional leads to

Kg=Q o o (38%)

where the stiffness for the linear element is given by
T -1
K=GH G (39%)

Once the nodal point displacements g have been

calculated, the corresponding strains are obtained from

(36*%) and (24%*)
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-1
e=Pp=PH Gg (42%)
Element-aligned stresses are then recovered using the
stress-strain relation defined in (22)

-1
Y=ce=CPH Gg (43%)
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CHAPTER 5
STRAIN APPROXIMATION

Derivation of the nonlinear SHEIM5 and SHELM9
elements is complete once the strain polynomial fun;tions,
i.e. entries of P in (24), are determined, This, in fact,
is the most crucial point of the development. For example,
if the polynomial chosen is of insufficient order, zero-
energy modes may develop. At the other extreme, an
excessive number of strain parameters will ultimately result
in the element 1locking when used in constrained media
applications.

In [19,61], several useful concepts and criteria
proposed in the literature were assessed and synthesized in
an attempt to develop a general framework for the selection
procedure. It was concluded that, in general, four
considerations should be given in choosing the strain
polynomial functions: (i) alli kinematic modes must be
suppressed, (ii) constraint index must be greater than zero,
(iii) element properties must be invariant, and (iv) whether
or not the stress calculated from the assumed strain

functions should satisfy the pointwise equilibrium

requirement.
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As in these earlier studies, here too, equilibrium
is relaxed. The decision appears Jjustified since, as
demonstrated in (18), this requirement is in fact fulfilled,
at 1least in an averaged integral sense. Moreover, the
right-hand-side 1load vector term Q indirectly enforces
equilibrium as it "balances" interial stresses with the
applied 1loads. The remainder of this chapter then will

focus on items (i)=-(iii) and their influence on the

selection process.

5.1 Suppression of Zero-Energy Deformation Modes

A necessary requirement for the element stiffness
matrix to be of sufficient rank is that the number of strain
parameters should be greater than or equal to (d-r), where
"d" is the total number of displacement degrees-of-freedom,
and "r" the number of rigid body modes. Since nmultiple
strain parameters may correspond to the same deformation
mode leaving some degrees-of-freedom "unsuppresse@", the
above condition is certainly not sufficient to ensure proper
rank. Based on considerations of deformation energy, it was
further suggested in [54) that the total number of strain
parameters should indeed be kept minimumn, while
simultaneously suppressing all kinematic deformation modes.
Not only is this least-order approximation desirable with
regard to constraint index arguments, but it is the most

computationally efficient approach as well.
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5.2 Locking and the Constraint Index

Because various deformation modes may activate more
than one strain component, there is some flexibility with
regard to the manner in which these modes are suppressed.
Indeed, it is precisely this freedom in choosing the strain

polynomial which enables the mixed element to filter out

"troublesome" terms, thus alleviating locking. To

illustrate, consider the degenerated plate/shell incremental

strain-displacement relations expressed in natural

coordinates

AU

Ir

v
pe = 2?- (44)
S

dAY AV

- 4+ ===

s dr |
3ABT

2r

as R
pe = | - - - @s)

J48T ppes

ds ?r

IAVW
[
aY = . o (46)
W e
ir r

- 4
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Since displacement modes corresponding to A6 and A® appear
in both bending and shear strain expressionsf to ;inimize
constraints (shear), given a choice, A}3's selected to
suppress the A8 and A8 modes are assigned to the beﬁding
components. : s

The standard displacement-based element, of course,
has no such flexibility. All displacement modes associated
with A8 and A8 are carried along in the shear strain
expressign. This Zlement naturally then is much more likely
to lock as the plate/shell thickness becomes small.

Constraint index concepts provide the motivation for
discussions such as the one above. As originally conceived
[44], they were developed in an attempt to analytically
gauge an element's behavior in some 1limiting case by

relating deformation degrees-of-freedom to constraint

relations. In equation form:

cI = NK - NC (47)

where, CI element constraint index

NK = number of kinematic degrees-of-freedom
brought by an element when added to an
existing mesh

NC = number ' of independent constraints intro-
duced 1in the limiting case (thin plate in

the present context)
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The constraint index then is a measure of the "true degrees-
of-freedom" brought to the finite element mesh. Positive
values of CI suggest that the element will behave favorably,
while CI < © indicates failure in constrained media

applications.

5.3 Element Invariance

7 As discﬁssee rin the previoﬁs chapter, natural
coordinate representation of the strain polynomial is the
most effectlve meaqsupf achieving the element invariant
property. Also noted in Chapter 3 was the spec1al treatment
requiredr in constructlng the lamina coordinate reference
frame. 5pecifieeiiy,‘ the in-plane laminae and natural

coordinates must share the same angular bisector (see Figure

2).
As a counter—exa?pie, assume that the lamina system
"1
is defined such that e (designated as e in Figure 4) is
1 1

always directed along the natural coordinate r-axis.
Figures 4(a) and 4(b) illustrate two of the four possible
element numbering . schemes. Because of the nonzero
distortion angle o, el in (a) rotates by only (90- e) degrees
if renumbered as in %b). Slnce renumberlng 1mp11es a 90-
degree rotation in the rs—plege (strains Aell(r,s) and Aezz
(r,s) are orthogonal) and e rotates only (90-8) degrees,
the invariant property is lo;t for all but the undistorted

rectangular elements. The equal angle bisector approach
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(a)

S —

I’ 5 |
Zfidisforfion»

angle, 8

(b)

Invariance and the Lamina Coordinate Reference Frame
Figure 4
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1

always rotates e in 90-degree increments in the

i

regardless of the numbering scheme chosen.

The above is

invariance. Clearly,

still not

sufficient to

rs—-plane

guarantee

if the strain polynomial is

symmetric with respect to permutation of the "r"

and

not

Ilsll

variables, the elements of Figure 4(a) and 4(b) would yield

two distinctly

different

invariance is assured only if:

polynomial is used (e.g.

a corresponding r-term in pAe

for every s-term in pe

responses.

(i) a balanced

To

11

respect to an equal angle bisector lamina system.

5.4 Strain Polynomial Functions

summarize,

strain

, there is

) and (ii) it is written with

When conéiderédgfogethér, the above guidelines lead

to strain being approximated in terms of natural coordinates

as

where subscripts m, Y ,and b refer to membrane,

bending, respectively.

g

For SHELMS
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[11-500} .
P¥= (50)

and for SHELM9

2
lrsrssrs0O000 O O0O0OO O
2 2
000 Or 0O01lrsrssr 000 O (51)

thae)
|

000 00 0000 O O01lTrxrsrcrs

2
lrsrssr 000 O
y 2 (52)
000 Ors lrsrs

1t
I

with bending strains for both elements defined as
P=¢t *P (53)
“b m
The above interpolations correspond exactly to those given
in [61] and [19]. This is to be expected since the present
study is a natural generalization of these earlier works.
Equations (49)-(53) represent a least-order approxi-
mation for strain which simultaneously suppresses all
kinematic modes. It is easily verified that the invariant
requirement is also satisfied. The constraint index and its
predictive capability related to locking warrant further
discussion, however.
Illustrated in Figqure 5 are CI calculations for
elements SHELMS and SHELM9. Applied to the shear 1locking
problem, no degradation in element performance is

anticipated, as CI > 0 in both cases. However, once

49



B e e e e e

YN NN

Existing mesh

Fa e e O N

(a)
*——@
® ®

(TT7777 77777
Existing mesh

v

(b)

Shear (plate)

NK =6
NC = §
CI =+l

Element SHELMS

Shear (plate)

NK=12
NC=9
CIl=+3

Element SHELM9

Sheagr + Membrane

NK =10
NC =12
Cl =-2

Shegr+ Membrane

' NK =20
“NC=24
Cl=-4

Constraint Index Calcvlations

Figure 5
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membrane constraints are introduced, (47) suggests potential
problems. It was argued in [19] that perhaps a direct
application of the constraint index 1is too severe.
Requiring 091 --> 0 is realistic because shear strain must
vanish for thin plates/shells subject to transverse loading.
But, since many shell problems of practical importance are
dominated by membrane actions (and hence, AP 1is in fact
nonzero and therefore should not be required mto vanish),
equation (47) is viewed as being overly pessimistic.

In light of the above discussion, apparently
interpretation of the constraint index applied to shells is
a much more difficult issue to deal with. Indeed, whether
or not a constraint is active will depend upon the structure
geometry and loading. Boundary restraints enter in as well,
so that the constraint index is very much a problem-
dependent quantity. Trouble-free performance is assured for
nonnegative CI, since (47) represents a worst-case limiting
criteria. However, CI £ O does not necessarily indicate
failure, since it is not entirely realistic to think that

all constraints will be active simultaneously.

5.5 Element Distortion Considerations

The elements considered may encounter two levels of
distortion; namely, that due to: (i) curvature, and (ii)
deviation from rectangular configuration in plan view. The
integration point-attached rotating lamina sfstem

automatically incorporates the effects of curvature
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throughout the entire deformation process. 'For elements
skewed in the local rs-coordinates, the following covariant
coordinate transformation is introduced
1. T
e = 3 e 3 (54)
where, J 1is the element centroidal Jacobian transformation
matrix in the rs-plane relating lamina and natural
coordinates. The constant (centroidal) Jacobian is
essential to maintaining the order of the assumed strain
polynomial. Evaluated otherwise might trigger the formation
of kinematic modes or induce the locking problem once again.
The abbve transformation wasrﬁ;£ inc}uded in earlier

formulations [58,61]. In [58], mesh distortions were

compensative, so that the overall system response was not

severely degraded. For unidirectional skewed problems (see-

[(19], [45] and Section 7.2) however, special treatment is
required in the form of (54) to reduce the element's

sensitivity to distortion.
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CHAPTER 6
IMPLEMENTATION

Described herein are the necessary modifications to
attach elemeﬁts SHELMS and SHELHé to an existing finite
element analysis program. A research;oriented code, NFAP
[17], is chosen, although the following discussion is
appropriate to any general-purpose nonlinear'finité element
package. As has been earlier demonstrated, since strain
parameters are Veliminated at eiément 1e¢e1v leaving only
nodal displacements as unknowns, the mixed elements are made
transparent from a user standpoint. Once in place, the user
thus requires no additional information with regard to the
underlying theory in order to effectively use these

elements.

6.1 Program Flow
The overall program flow for NFAP is outlined in
Figure 6, where those portions affected by the addition of

elements SHELM5 and SHELM9 are indicated in boldface type.
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Restart
Tape?

NFAP Program Flow
Figure 6
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Figures corresponding to these points of modification

discussed below:

modifications.

the

FIGURE 7 : Subroutine NFAPIN processes nodal point
data (IND = 0) and directs the pressure load
calculations (IND = 2).

FIGURE 8 : ELCAL calls appropriate subroutines to
calculate element storage requirements. Any
element-related guantities needed at problem start
(e.g. nodal connectivity, initial fiber system)
are also defined. ‘

FIGURE 9 : LSTM drives the 1linear analysis.
Element stiffness matrices are computed and then
stored in ADDBAN.

FIGURE 10 : ASSEM directs element stiffness
calculation as well. Indicated flow is for the
nonlinear case (IND = 4).

FIGURE 11 : EQUIT drives the solution during
equilibrium iteration (ICOUNT = 4) in nonlinear
analysis.

FIGURE 12 : Element stress calculation for linear
analysis or for nonlinear analysis at end of 1load

step.

are

In total, 19 subroutines are affected by the above

new elements, but in most instances entirely
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NFAPIN

Subroutine NFAPIN
Figure 7
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ELCAL
(IND = 0)

NPAR(1) =
[ 1
[Truss| [TopMrE]| [THREDM] [BEAM| |PLATEL| [SHELL SHEL9
L
MQSHEL
MATRTP| |DIRCS9| |VECTOR| |COLHT INTWA9
If
Nonlinear
FNCT9| |VECTOR| ELT9D3
IEPL93

Subroutine ELCAL
Figure 8.
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NPAR(1) = 9
] | 1 [ [ 1
TRUSS| |TODMFE| |THREDM| |BEAM| |PLATEL|[SHELL ISHEL9
L i L L L L
MQSHEL
QUADS IADDBAN]
DIRCS9 TMAT PMATS] | DERIQ9] ]INVERs] MODIFY
FNCT9 | vECTOR VFUNCTQl INVERS

Subroutine LSTM
Figure 9
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ASSEM

IND = 1 : Linear (see Figure 9)
IND = 4 : Nonlinear
ELEMNT | ASBLK
NPAR(1) = 9
[ [ l [ | ]
[TRU$§] TODMFE THREDM BEAM| |PLATEL| |SHELL SHELS
MQSHEL
MODIFY NORMAL QUAD9 ADDBAN LDDISP
[ l | | |

DIRCS9 TMAT PMATO DERIQ9 ELTOD3
FNCT9 VECTOR FUNCT9S ELPLS3 TRANSF
INVERS
MODIFY
INVERS

Subroutine ASSEM

Figure 10
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EQUIT
(ICOUNT = 4)

.

ELEMNT ASBLK

LSOLVE

(see Figure 10)

Subroutine EQUIT

Figure 11
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STRESS

(KPRI = 0)
ELEMNT
NPAR(1l) = 9
| I | | I l .
TRUSS| |TODMFE| |THREDM| |BEAM| |PLATEL| |SHELL SHEL9
L L il L L L
MQSHEL
Linear
d _ J I -
MoDIFY] ([worMAL] [pIrcss] [PMATS] [TRANSF]
NL
|
FNCT9 | | VECTOR] ELT9D3] [TRANSF|
ELPL93

Subroutine STRESS
Figure 12
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subroutines (denoted by "#") are written.

each follows:

DERIQ9 : Defines the linear and nonlinear global
strain-displacement operators (equations 13 and

14) at integration point (r,s,t).

* DIRCS9 : Driver for construction of the 1lamina

coordlnate systen (equatloﬁ 6)

* ELPL93 : Records strain hlstcry throughout the

ﬁonlinear incremental solutiéﬁ p“ﬁééfg_w;mw_ﬁ

* ELTYD3 - Allocates 1ntegrat10n point torage “for

nonlinear analysis.

* FNCTQ : Calculates shape functions and Jacobian

operatcf at element middle surface.

* FUNCT9 ¢ Calculates shape functlons (equatlon 9) -

and Jacobian operator at 1ntegratlon p01nt

(r,s,t).

ﬁ*rggg;gg : Initializes storage for the nonlinear

problem.

INPUT : Existlng subroutine modified to allow for
the two surface input option (equation 1).
* INTWA9 : Drives storage initialization for non=

linear analysis.

* MODIFY : Calculates conderised stiffness, loads and

displacements (equations 56, 58 and 59). Oonly
called if middle node condensation option |is

active (IETYPE = 1).
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* MOSHEL : Driver for the mixed shell element.
Defines the fiber system and element nodal
connectivity at problem start. calls appropriate
subroutines to calculate _and store element
stiffness matrices. Directs element stress
calculations at the conclusion of each load step.
NFAPIN : Eiisting subroutine modified to allow for
the two-surface input option (equation 1).

* PMAT9 : Evaluates P-matrix (equations 49-53) at
integration point (r,s,t).

PRESSL : Existing subroutine modified for elements
SHELM5 and SHELM9. Drives the pressure load
calculations.

PRESS : Existing subroutine modified for elements
SHEIM5 and SHEIM9. Positions equivalent nodal
force pressure loads in global array. :

* PRESS9 : Calcgulates equivalent nodal point forces
due to pressure load. Limited to loads applied
‘normal to the shell surface (IFC = 5) and those

_independent of deformation (IPGD = 0).

* QUADY : Drives formation of the element stiffness
matrix (equations 26-35 and 38-40).

* SHEL9 : Allocates storage for mixed shell element.

* TMAT : Handles transformation from global to

lamina reference frame (equation 7).
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As mentioned previously, the current research is
confined to geometric nonlinear analysis with small strain.
Consequently, when total assumed strains are required (e of
equations 29 and 31), ELPLS3 sunms the accumulgted
incremental strains directly. The corresponding total
stress is then obtained according to (43). For large sfféiﬁ
analysis, additional transformations would be required. 1In
the present context, these transformations reduce
(approximately) to identity matrices.

It is recognized that mixed Wformulatidné, when
compared to the standard displacement-~baged models,
typically require more CPU time to form element stiffness
matrices of the same size. Therefore, any characteristic of

the formulation which 1lends itself to improving the

element’s efficiency is to be taken full advantage of. As

an example, in linear analysis, stress is computed in MQSHEL
-1

according to (43%*). Rather than re-computing H- and G, a

more efficient strategy would be to write the matrix product
to tape as the element stiffness is being formed in QUAD9,
and recovering during the stress calculation phase. A
similar strategy is invoked for the nonlinear analysis. Not
only are H- and G written to tape, but comparison of (36)
and (40)-revéalsﬁthat the matrix product H—l(Z-W) is common

to both equations. Therefore, as the right—haﬁd-side load

vector term Q is being constructed in QUAD9 during
~2
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' -1
"iteration "i", the matrix product H (2-W) is saved for the

incremental strain calculations of iteration "i+1".

6.2 Added Features

The difficulties encountered when attempting to
define unique fiber systems at shell interfaces has Prompteq
addition of a two-surface input option. As previoUsly
described, this deficiency is artificially embedded in the
SHEILM5 element for all but the flat plate problemns. Since
the rotational degrees-of-freedom generated from these fiber
coordinates are retained as unknowns in the Qlobal system of
equations, unique fiber direqtions are essential if
meaningful results are to be obtained. — '

A second added feature involves a procedure for
internally condensing out the SHELM5 center node degrees-gf_
freedom. Condensation does not in any way enhance the
element’s analysis capabilities. Instead, ‘it is vieweq as
more of a cosmetic improvement, since most pPre-and-pogg -
processors are not structured to handle elements such as
SHELMS.

For SHELM5, interelement continuity rquirements
concern only the corner nodes, so that center node degreeg-
of-freedom may be eliminated. In partitioned form, ¢y,

element equations are written as. I
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K K AU AR
“uu “uli - “u

* = (55)
K K Al AR,

-Au -11
where subscripts "u" and "A" correspond to the retained
corner node and condensed central node degrees-of-freedon,
respectively. Incremental central node displacements are

obtained from (55) as

AY = gnlt KRy - ’5:1 Au ] (56)
Substitution of (56) back into the first of equations ' (55)
leads to
R*pn = AR (57)
where, | ’
g,= condensed element stiffness
- X - K K K (58)
“uu "ud "A1 “au
AR = condensed inc§emental load vector
B A}'tu ) I'('u). I'{Al Agl (59)

Since the order of the system matrices has been lowered,

storage requirements are likewise reduced.

6.3 Help for the New User

Although it is not necessary for the user to possess
knowledge of the formulation's underlying theory, he/she
must still be aware of potential problem areas. As has been

repeatedly stated, knowing the conditions under which
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equation (2) may be correctly used to define the fiber
direction is fundamental to obtaining meaningful results.
The user must also be familiar with the method in which
rotational degrees-of-freedom are defined internally
(equations 3 and 4) in order to accurately specify boundary
conditions on rotations. The above considerations are
common to many middle surface shell element formulations and
should not be interpreted as a deficiency unique to the
present work.

As described earlier, SHELM5 and SHELMS were
developed for small strain, geometric nonlinear analysis
only. Additional items which the user should be aware of

are given in Chapter 7.
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CHAPTER 7

NUMERICAL RESULTS

As outlined in Chapter 6, elements SHEIM5 and SHEIMS

have been implemented into NFAP [17], a general-purpose

nonlinear finite element program. All calculaticr@ reported
herein were performed in double-precision on the IBM 3033

Computer at the University of Akron. )

The linear problem set (Sectiéns 7.1-7.3) is simply
a collection of some of the more dramatic results presented
in previous papers [19,61]. Those additional problems
comprising the nonlinear set (Sections 7.4-7.11) are of
course restricted to small strain, geometric nonlinear

analysis. Other considerations/limitations include:

* Inteqgration gorder: for both linear and nonlinear
analysis, a (3x3x2) scheme is recommended

K Convergence criteria: displacement-controlled,

where the incremental norm must be less than
1/1000 of the norm of total displacements
[l aw ] < 0.001 % [| u ||
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Solution method: all full Newton-Raphson (FNR),

i.e. stiffness reformed for every iteration of
each load step

Formulation type: an UL approach is used

exclusively

Analysis type: static, i.e. no dynamic or

frequency analysis capabilities presently exist

Pressure loading: must be independent of

deformation (IPGD = 0), with loads permitted

on the shell surface only (IFC = 5)

Load step and solution time information for the nonlinear

problem set is provided in Appendices A and B, respectively.

For discussion purposes, the various elements

for comparison in the numerical results to follow

designated as

Q9

Q9

Q9

: 9-node isoparametric displacement-based
element with exact integration
-URI : 9-node isoparametric displacement-based
element with uniform reduced integration
-¥ : 9-node isoparametric displacement-based

element with uniform reduced integration

and stabilization matrix [10]
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7.1 Patch Test

An important convergence requirement for an element
is to pass the patch test for arbitrary geometry. A mesh of
distorted elements are subjected to a loading which, in an
exact analysis, corresponds to constant strain condipions.
If the element does in fac£ represent the constant strain
state, the patch test is passed.

In this context, for bending'analysis, the element
assemblage must be able to assume a state of constant
curvature. To investigate element behavior in this regard,
a square cantilever plate subject to a line bending moment

along the free edge is considered. Mesh configurations are

shown in 7fighré 13 for SHELM9. Results for SHELM5 were

generated using similar (4x4) mesh layouts. As displayed in

Table 1, both elements are relatively insensitive to
distortions. Exact correlation is not to be expected, since
the transformation defined by (54) is only a constant-value

averaged correction.

7.2 Morley's Thin Rhombic Plate

Skew plates have in the past been a particularly
challenging problem due to the singular nature of bending
moments at obtuse corners [45]. Additionally, since
arbitrary disﬁortions can be compensative, unidirectionally
skewed mesh patterns may in fact be the more severe test of

nonrectangular element performance.
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Moment = 0.50

’® 7 * @’ Length =10(square)
¢ o ® o o Thickness = 0.10,
E = 30,000
o —4& »> ] v =0.30
¢ ® ® ® )
9, ©)

(a) Regular

LA
be—n

{(b) Linear Distortion (c) Curved Distortion

Patch Test Mesh Configurations
Figure 13
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Patch Test Deflections

Table 1

and Stresses

Normalized
Normalized Bending Stress @
Deflection Element Centroid
1l 2 3 4
Regular Mesh 1.00 1.004}1.00| 1.001} 1.00
Linear Distortion 0.99 0.95 | 1.01{ 0.98| 0.99
Ccurved Distortion 0.98 0.97 | 0.98 0.99 .99
(a) SHELM5
Normalized
Normalized Bending Stress @
Deflection Element Centroid
1 2 3 4
Regu’ar Mesh 1.00 1.0011.00 1.001} 1.00
Linear Distortion 1.00 1.00}1.001{1.00}1.00
Curved Distortion 0.99 1.01 1 0.99 | 0.97 1 0.98
(b) SHELM9

NOTE :
free edge.

For SHELMS,

72

Deflections reported are at midpoint of the

centroidal stresses
are for the four extreme corner elements.



with consideration for the above remarks, element
behavior when severely distorted is examined by considering
the pressure-loaded skew plate of Figure 14. Depicted is
the (2x2) mesh configuration (N=5) for SHELM9.

Importance of the planar Jacobian transformation is
demonstrated in Table 2. Failing to consider (54) when
interpolating strain, results in an artificially stiff
response. When the transformation is included, convergence

is much improved.

7.3 Truncated Hemispherical Shell

Mesh geometry and other pertinent information are
given in Figure 15. Due to symmetry, only one-fourth of the
shell 1is discretized. This 1is one of a series of
recommended benchmark problems designed to determine
behavioral characteristics of new shell elements [42].
Loading is such that large sections of the shell rotate
almost as rigid bodies, making this a particularly
challenging problem. Because this nearly rigid body motion
involves 1little membrane action,v the potential for locking
is great.

Convergence curves for normalized displacements at
point of load application are plotted in Figure 16. Despite
being of lower order, SHELMS converges faster than any of
the 9-node elements considered, including SHELM9. The
standard displacement-based element with exact integration

is a big disappointment. This was almost to be anticipated
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Pressure load = 0.00!
Length = 100
Thickness = 0.10

E = 445,530

vy 30,30

a = 305,

All edges simply supp

orted

Thin Rhombic Plate
Figure 14
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Table 2

Thin Rhombic Plate Deflections and Moments

Normalized Maximum Deflection

without egtn. (54)

with egtn. (54)

N SHELM5 | SHELMS SHELM5 | SHELMS
5 0.691 0.498 0.939 1.046
9 0.721 0.759 0.899 0.920
13 0.815 0.908
17 0.844 0.915
33 0.897 0.946
Normalized Maximum Moment
without egtn. (54) with egtn. (54)
N SHELMS | SHELMS SHELMS5 | SHELM9
5 0.565 0.548 0.848 1.088
9 0.647 0.842 0.906 0.938
13 0.873 0.937
17 0.897 0.947
33 0.935 0.967
NOTE : N is the number of nodes along plate edge
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Truncated Hemispherjical Shell
: o

Figure 15
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Normalized Rodial Deflection at Lood Point

A
.2}
1.0
0.8}-
; Analyllcal
/ . —fA— Q9-r(=Q9-URI)
/! —0-—- Q9
0.6} / --@-- SHELM9
)/ —-0-- SHELMS5
’
7
/
0.4}- /
/
®
0.2}
0 ) . M}//‘j | l P
3 6 9 12 15 18

Number of Nodes ger Slde

Displacement Convergence for the Truncated Hemispherical Shell
Figure 16
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though, considering the severity of the problenm. As an
aside, non-detrimental effects of the stabilization matrix
are noted, as Q9-Y and Q9-URI yield identical results.

7.4 Cantilever Beam with End Moment

A moment-loaded cantilever bheam was selected to
begin the nonlinear study. Because of its simplicity
(essentially 2D with no shear/membrane locking concerns) and

the availability of an analytical selution, this problenm is

particularly well-suited for initial verification of

geometric nonlinear portions of the code.
Structure geometry and normalized displacements as a
function of loading are illustrated in Figure 17, For

clarity, SHELM9 has been omitted, as its response is almost

identical to that of SHELM5 and Q9-URI. Even though large

nonlinear deformations were involved, none of the elements

considered experienced convergence difficulties. This is
not surprising, in 1light of the relatively unconstrained
néture of the problemn. |

Also of note is that the mixed elements required
essentially the same number of iterations over the full
loading history as Q9-URI (see Appendix B). As discussed in
Section 2.3, a lessef number was expected. Again, this

might also be attributed to the problem simplicity.
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Normallzed Displacements (U/L ,W/L ,®/211)

1r

T«

08+

0.6¢

0.4:

0.2%

— Analytical
A SHELMS (6 elements)
® Q9-URI (2 elements)

0.1 0.2 0.3 0.4 0.5

Applied Moment M /Mg

Cantilever Beam with End Moment
. Figure 17
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7.5 Cantilever Beam with End Shear

This is a somewhat more challenging problem than the
one just considered. Here, the beam is thin (L/h = 100) and
subject to transverse shear, so that locking is now a point
of concern.

Figure 18 illustrates the structure geometry along

with a plot of displacements as a function of load. Again, .

SHELM9 has been omitted for clarity. Although deformations
again were rather lafge (U/L = 0.32? Wﬁ/L = 0.67), no
problems were encountered. Because the mixed elements now
converge in fewer total iterations, the CPU time ratio has

been reduced (compare Sections 7.4 and 7.5 in Appendix B).

7.6 Shallow Shell Subject to Concentrated Load

The level of complexity is raised another notch, as
membrane forces are now responsibielfo; carrying a portion
of the lcad. If the shéll is shallow Vho:wever, there is only
a mild coupling of bending and membrane actions.,
Consequently, accurate representation of shallow shells
typically 1is well within the capabilities of most shell
elements.

Information pertinent to this problem is given in
Figure 19. Because of symmetry, only one-quarter of the
shell is considered in the finite element discretization.
Once more, for clarity the SHEIM9 plot is omitted, with only
the snap-through load level reported. Again, each of the

elements considered were trouble-free,
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Load P

e
=]
h
y _ y \j
\ RN
R w
L=10.0 ‘
h=0.1 N
E=1.2x10° {y_«
v =0.0
A

—— Horrigmoe & Bergan (1978)
A SHELMS (6 elements)
® Q9-URI (3 elements)

1 i 3. L -
2 4 6 8 10

Displacements (U, W)

Cantilever Beam with End Shear
Figure 18
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‘Ceniral Load (kN)

R=2540 mm

L3254 mm
h =127 mm
8=0.] rad.
E£23102.75 N/mm?
i p g v=20.3
- Straight edgas : hinged & immaovable
Curved edgss : free
2.5+ é,c"'l
s
;ﬁ' AV
2.0+ -S?t' — ‘ e
e
'4
K - Bathe and Balourchi; P,,,72.24 kN
’l Hughes and Liu; P,,72.20 kN
1.5+ -
’I
I
I
)
’
.01 prgc = -
Y, A SHELMS (5x5 maesh); P, =2.20kN
O Q9-URI(2x2 mesh);P,,,=2.21kN
051 £ ’  SHELM9 (2x2 mesh); P =2.23kN
{not shown) '
Q — - 1 L -
5.0 10.0

Central Daflaction (mm)

Shallow Shell Subject to Concentrated Load
Figure 19
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Though difficult to determine quantitatively just
how many added membrane constraints are introduced, because
of the shell's shallowness, additional constraints should be
of secondary importance. In this particular cése, boundary
restraints (immovable supports along the straight edges) are
such that a substantial portion of the strain energy will be
membranal. As a result, inextensional bending modes are not
crucial and membrane locking should not be a majdr concern

here.

7.7 Pinched Cylindrical Shell

Element behavior for deep shell geometric nonlineaf‘
analysis is now investigated. Structure éeometry, loading,
boundary conditions and material properties are given in
Figure 20. Again, symmetry conditions are such that only
one-eighth of the shell need be considered. This is one of
the more severe tests available, since complex bending-
membrane coupling action (region C) and inextensional modes
(regions A, B and D) are both present.

Load-deflection curves are plotted in Figure 21.
Though each of the elements remain numerically stable, we
now begin to see small deviations in reported results. In
the absence of an analytical solution, no‘further comments
in regard to element accuracy are made. Here again, given
the same mesh and load step sizes, SHELM9 is converging in
fewer iterations than Q9-URI, resulting in further reduction

of the CPU time ratio (see Appendix B).
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Data:

R=100
L/R=2
R/h =100

E=3:IO‘

v =0.3

- R
o " i Rigid diaphragm
( C\ /— (u :V=QZ:O)
e

Rigid diaphragm
(u=v =9z= Q)

Pinched Cylindrical Shell with End Diaphragms
Figure 20
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7.8 Cylindriéal Bending of Square Plate Subject to Gravity
Load

Due to their highly nonlinear (geometric) response,
the cylindrical bending problems of this and the subsequent
two sections are particularly severe tests for any shell
element. Loading 1is such that maximum deflections are on

the order of 500 times the plate thickness, with rotations

on the order of one radian. Since the plate is permitted to

"flow" into the cavity when loaded (see Figure 22), in-plane
stretching is small and deformations remain elastic.

Conditions such as these tybiéa;iy are encountered in the

"binder wrap" phase of sheet metal forming operations [20]._

Structure geometry and normalized displacements as a
function of loading are shown in Figure 22. Indicated mesh
sizes are for the one-cquarter plate (due to symmetry). The
lower order SHELM5 element experienced no difficulties.
SHELMS however, despite having double the number of degrees-
of-freedom, is observed to be stiff. Increasing the order
of integration from (3x3x2) to (4x4x2) was of no help.
Element Q9-URI fared even worse. The displacemént-base&
element failed to converge for even the first 1load :step.
Convergence was still a problem when 1loads were further
subdivided into 200 equal steps! Interestingly enough,
these same element meshes which were inadequate for the
nonlinear problem, yielded exact solutions when used in the

corresponding linear analysis.
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Narmallzed Dlsplacement 3/L, A/L

free 2L 21280 mm

h. =0.8 mm

E 22.07x10°N/mm
s.S. 5.8, v 30.3

P 3.7x10°*N/mm?

~N

2L

-
3
1]
®

2L — Exagct

0.8¢ b= - A SHELMS (5x5mesh)
I ©Q SHELMS (5x5 mesh)

&N Q9-URI failed to converge

Y

Gravity Load p (I07*N/mm?)

Cylindrical Bending of Square Plate
Subject to Gravity Load
Figure 22
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Constraint concepts again provide a means for
helping to explain the unusual behavior of elements SHELMS
and Q9—URi described above. Given the plate's thinness
(2L/h = 1600) and loading, shear constraints most certainly
must be considered. Théiroller supports limit in-plane
stretching so that, once deformation has proceeded far
enough for shell action to take ¢ver, membrane constraints
also become active (note that SHEIM® is still fairly
accurate for the first two data points). Finally, since
bending occurs in one direction only, additional constraints
associated with the off-bending direction are also
introduced (three for SHEIM5 and six for SHELMY; see
equations 49, 51 and 53). The net effect of constraints
entering in on three different levels apparently is too much
for. elements SHEIM9 and Q9-URI to handle. What on the
surface appeared to be a falrly straightforward nonlinear
plate bending problem, has in faét turned out to be a
monster! ol
7.9 Cylindrical Bending of Square Plate Subject to a Line

Force

Pertinent information for this test case is given in
Figure 23. Except for loading, it is identical to the
previous problemn. It has been included primarily to
facilitate making comparisons with its "beam equivalent" in

Section 7.5.
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As in the previous example, SHELM5 experiences no
difficulties, while SHELMY9 is noticeably stiff and Q9-URI
again failed to converge. Of additional interest is that
the "beam equivalents" of SHEL&Q and Q9-URI in Section 7.5
suffered no similar degradation. There, with the third
direction small in comparison to the beam length, off-
bending direction constraints are not slgnificant. Also, as
before, the corresponding linear analyses yielded the exact

solutions.

7.10 Cylindrical Bending of Square Plate Subject to Speci-

fied Line Displacements

This example is the cdnjﬁ@ate of Problem 7.9, i.e.
line displacements rather than line forces are specified
along the plate longitudinal axis It has been included to
show the element's capabllity for analy21ng enforced
displacement input. B ‘

Line forces were calculated from centroidal
transverse shear stresses of the element nearest to the
plate center. They are plotted as a functlon of speclfled
displacement in Figure 24. As in the previous two examples,

SHELM5 was trouble-free, while SHEIMY9 and Q9-URI experienced

Eroblems.
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L 1 -

1
G.10 0.20 0.30 0.40

Line Force, 2P (N/mm)

Cylindrical Bending of Square Plate
Subject to Specified Line Displacements
" Figure 24
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7.11 Simply Supported Square Plate Subject to Gravity Load

This final example is completely analogous to
Problem 7.8, except that now all four plate edges are simply
supported. Difficulties encounééred in the earlier problem
were attributed to boundary conditions which activated an

unusually high number of in-plane and bending constraints.

It is speculated that, by simply supporting all four edges, .

the structure will now exhibit true biaxial plate bending
behavior, thereby relaxing many of these constraints.
Analysis results are presented in Figure 25. Once
again, SHELM9's plot has been omitted, as its response is
almost identical to that of Q9-URI for the less constrained
problem. As postulated, the additional restraint has indeed
enabled both SHEIM9 and Q9-URI to now obtain accurate,
convergent solutions (the 1atte£; only after _considérable

"searching" to find an appropriate convergent step size).
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Figure 25
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CHAPTER 8
SUMMARY

8.1 A Brief Review

Numerous methods are presently available to analyze
thin plate and shell structures. Assessing the merits and
drawbacks of some of the more popular current approaches, a
degenerated mixed shell element was chosen for the present
study. In particular, it was proposed that the analysis
capabilities of the linear 5 and 9-node elements of [61] and
[19] be extended to include geometric nonlinearities.

Methodology necessary to effectively track an
eleﬁent's location and subsequent deformation during the

iterative step-by-step solution process was described. To

that end, extensive reference was made to the concepts set

forth in [34] concerning construction of element-level
lamina and fiber céordinate systems.

Element development was then traced from the
incremental variational principle on through to the final
set of equilibrium equations. A procedure for recovering
the linear element was also outlined. L

Strain parameters were then selected according to a
set of guidelines compiled in [19,54,61]. This, in turn,

stimulated a discussion regarding constraint index concepts
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and their predictive capability related to 1locking 1in
shells. Special procedures for 1limiting the element's
sensitivity to distortion were alsc described.

Details of modifications necessary tor incorporate
the elements into a general-purpose nonlinear finite element
program were discussed. Included were descriptions of: (i)
a two-surface input option, and (ii) a procedure for
internally condensing out center node degrees-éf—freedom.
Helpful hints and guidelines for the new user were also
provided.

Finally, performance characteristics of the elements
were evaluated in a wide variety of linear and nonlinear
plate/shell problems. Despite being of lower order, the 5-
node element proved superior, particularly in severely

constrained applications. P

8.2 Significant Findings

Despite limiting the research to linear and
geometric nonlinear static analysis, a substantial amount of
additional insight has been provided concerning the finite
element modelling of thin plate/shell structures. Some of
this information has also been reported in a parallel but
independent research effort at the University of Maryland
[58]. The more dramatic discoveries, however, are exclusive
to the present work. The reference here is to those

insights not confined to mixed formulations, but rather are
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relevant to finite element methods in general (see items 7

and 8 to follow).
Significant findings related to this research
listed below. A more detailed discussion of each item

follows.

Concurrently with the University of Maryland

1) More streamlined than previous mixed formula-
tions

2) Necessity of including the strain-displacement

mismatch terms in mixed formulations (see also

(51])

Exclusive to this Research

3) A numerical study illustrating the need for

inclusion of a covariant coordinate transforma-

i

+ion for severely skewed elements
4) Necessity of recording strain histories in
mixed formulations, even for geometric
nonlinear analysis _ ,
5) Ndﬁericai rféédliéwwto support the claim that,
given the same mesh and 1load step history,
mixed elements converge in fewer  total
iterations than their displacement-based

equivalents
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6) More evidence provided to support the theory
that, in mixed formulations, the lower order
elements may be more attractive

7) Numerical results refutiné the belief that the
same mesh used to obtain accurate 1linear
solutions will necessarily converge to the
correct nonlinear solution

8) Discovery of a new form of locking intrinsic to

shell elements subjected to uniaxial bending

More subtle contributions include: (i) illustration of yet
another constrained media application (see (8) above) where
mixed methods prove superior to standard displacement-based
formulations, (ii) extending analysis capabilities of SHELMS
and SHEIM9 to include geometric nonlinearities, (iii)
establishing a procedure for attaching mixed elements to an
existing displacement-based finite element program) and (iv)
code development for incorporation of twé-surface and
central node condensation options.

By relaxing the pointwise nonlinear equilibrium
requirements and assuming that displacement functions can
always be constructed which are compatible across
interelement boundaries, the current formulation is much
more streamlined than earlier hybrid/mixed methods [16].
The latter condition is easily satisfied for the degenerated
shell elements under consideration. As demonstrated in

(18), equilibrium is in fact satisfied in an averaged
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integral sense, so that the above simplifications are indeed
justified.

Since strains are interpolated "independently" from
displacements in a mixed formulation, strain-displacement
mismatch terms must be retained. These correction terms do

not appear in the standard displacement-based element

models. There, strains are computed as derivatives of

displacements so that, by definition, this relation is
automatically satisfied.

Morley's skew plate problem (Section 7.2) demon-
strated the need for a covariant coordinate transformation
for severely distorted elements. Earlier studies did not
consider this effect [58,61].

In displacement-based element formulations, strain
is obtained simply by differentiating the total
displacement. Mixed formulations, however, interpolate
strains increméntally. To determine the total strain, it is
therefore necessary to sumagné;ééq;eri§§:5§§§9ryrrat each
integrz-ion point throughoufﬁfh;VZntire solutiéﬁ ﬁféééss.

~ kiihgwriterative solution process involves calculation

of out-of-balance right-hand-side load terms, which are

difégfiy related to the element's current stress state.
Since deformations may be large, elements may also become
quite irregular in shape. By evaluating stress more
accurately and being less sensitive to distortion, the mixed

elements thus typically require fewer total iZlerations to
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converge than equivalent displacement-based elements.
Implications of the above are obvious. The entire process
of computing, assembling and solving 'the global system
equations is repeated fewer times, resulting in a reduction
in computation effort. Thus, the mixed element, despite
being more costly insofar as formation of the element
stiffness is concerned, is able to recover a portion of this
expense in a full-blown, iterative nonlinear analysis.

For the wuniaxial bending problem of Sections 7.8-
7.10, SHELM5 consistently outperformed SHELM9, despite being
of lower order. Apparently the additional degrees-of-freedom
gained in moving from a 5 to a 9-node element are offset by
an even greater number of added constraints. In this case,
the lower order element is preferred.

Sections 7.8-7.10 also served to illustrate that the
same mesh which yields an accurate linear response cénnot be
assured of éonverging to the correct nonlinear solution.
It was theorized in Section 7.8 that this may be a result of
shell actions kicking in as deformation proceeds, thereby
introducing membrane constraints not present in the 1linear
platé problem. The point to be made is that many research
efforts concentrate on the linear formulation, contending
that the nonlinear problem is nothing more than a routine
extension of the linear development. In light of the data
presented, this 1line of thinking appears questionable (see

also [7] for similar observations).
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Difficulties associated with shear and membrane

locking when modelling thin plate/shell structures are well

documented. Other constrained media applications

(incompressibléiméiérials,‘ contact ﬁfcblems etd.)rﬁave also

received considerable attention. Another form of 1locking

was encountered in this research (again refer to Sectishé
7.8-7.10). The shell element, designed for biaxial bending,
may not be able to satisfy the additional coﬁétraints
associated with vanishing of bending strains in the second

direction for uniaxial bending.

8.3 Suggestions for Future Work -

Having explored only the geometric nonlinear, small
strain, static analysis capabilities of elements SHELMS and
SHEIMY9, many other areas yet remain to be investigated. A
secénd level of research, aimed at improving upon the
current development, 1s also a possibility. Compiled below
are some suggestions for future work which addr:ss each of

these 2-ras. A brief discussion of each item then follows.

1) Improve computational efficiency of present
elements wusing a symbolic manipulator such as
MACSYMA [43]

2) Explanation (more quantitative) for the poor
behavior of SHEILM9 in the test problems of
Sections 7.8-7.10
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3) Investigation of other constrained Tmedia
problems
4) Extending element capabilities beyond static,

small strain, geometric nonlinear analysis

As indicated in Section 1.1, computational cost
considerations have long been a drawback for mixed element
formulations. Preliminary results indicaté that, for
nonlinear applications, closed-form expressions for element
stiffness matrices are far too complex. 'Targeting
individual contributions to the stiffness, such as the
elastic-plastic material matrix [18], may be more practical:
This particular application is of course Qalid for standard
displacement-based formulations as well.

Explaining SHELM9's breakdown in the thin plate
uniaxial bending problem may entail a more in-depth study of
constraint index concepts. Because of the difficulties
associated with interpretation of the constraint index for
curved shells, this author has only theorized as to the
cause for SHEIM9's poor behavior. Since the simply
supported version of Problem 7.8 (Problem 7.11) ‘and the
"beam equivalent" of Problem 7.9 (Problem 7.5) experience no
similar degradation, the constraint index-related
explanations provided do, however, appear to  have
considerable merit.

Whether or not mixed methods find general acceptance

in the finite element community in the near future is
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debatable. Nevertheless, mixed methods have established
themselves in constrained media applications and therefore
should be 1investigated further in this regard. As
illustrated in this research, being more costly
computationally is not so great of a concern if conventional
methods are unable to obtain a solution.
Brbadeniné?fanaiysis éaégﬁilifiés éf SHELMS and
SHEIM9 1is also desirable since practical applications are,
at present, rather limited. Areas of perhaps greater
interest inélude: (i) largerstf;in analysis, '(ii) material
nonlinear analysis, (iii) dynamic considerations, (iv)
laminated composite aﬁalysis, (v) polymer/rubber material

modelling, and (vi) high temperature applications.
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APPENDIX A

Nonlinear Problem Set Load Step Information

* NOTE

Number of From To
Section Equal Steps Load Load
7.4 6 0.00 0.15
15 0.15 0.30
30 0.30 0.45
7.5 16 0.00 4.00
7.6 8 0.00 2.00
4 2.00 2.20
0.01 increments to snap-through
7.7 2 0.00 1.00
8 1.00 3.00
2 3.00 4.00
7.8 20 0.00 3.7E-04
7.9 20 0.00 0.474
7.10 ' 20 0 500
7.11 10 * 0.00 1.85E-04

Q9-URI was unstable at this

-increment. A solution
obtained when load was further subdivided

into 30 equal steps.
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Nonlinear Problem Set Solution Time Information

APPENDIX B

T Total No.

Section Element (mesh) DOF Iterations CPU time
7.4 Q9-URI (2) 60 250 205 sec
SHELMS (4; 60 413 sec
SHELM5 (6 90 252 569 sec
SHEILM9 (2) 60 252 618 sec
7.5  Q9-URI (3) 90 47 63 sec
SHELM5 (6) 90 38 101 sec
SHELMS (3) 90 38 165 sec
7.7 Q9-URT (4%4) 328 38 297 sec
SHELM9 (4x4) 328 26 643 sec

7.8  Q9-URI (5x5) 550 ——- -
SHELM5 (5x5) 275 45 8.65 min
SHELM9 (5x5) 550 33 24.6 min

7.9 Q9-URI (5x5) 550 - -~
SHELM5 (7x7) 525 43 20.8 min
SHELMS (5x5) 550 34 25.1 min

7.10 Q9-URI (5x5) 550 0 -—
SHELMS (7x7) 525 0 5.6 min
SHELM9 (5x5) 550 0 9.3 min
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